fadin.kernels.DiscreteKernelFiniteSupport¶
- class fadin.kernels.DiscreteKernelFiniteSupport(delta, n_dim, kernel, kernel_length=1.0, lower=0.0, upper=1.0, grad_kernel=None)¶
- A class for general discretized kernels with finite support. - Parameters:
- deltafloat
- Step size of the discretization. 
- n_dimint
- Dimension of the Hawkes process associated to this kernel class. 
- kernelstr or callable
- Either define a kernel in {‘raised_cosine’ | ‘truncated_gaussian’ | ‘truncated_exponential’} or a custom kernel. 
- kernel_lengthfloat, default=1.
- Length of kernel. 
- lowerfloat, default=0
- Left bound of the support of the kernel. It should be between [0, W]. 
- upperfloat, default=1
- Right bound of the support of the kernel. It should be between [0, W]. 
- grad_kernelNone or callable, default=None
- If kernel in (‘raised_cosine’ | ‘truncated_gaussian’ | ‘truncated_exponential’) the gradient function is implemented. If kernel is custom, the custom gradient must be given. 
 
 - Methods - grad_eval(kernel_params, time_values)- Return kernel's gradient evaluated on the given discretization. - intensity_eval(baseline, alpha, ...)- Return the intensity function evaluated on the entire grid. - kernel_eval(kernel_params, time_values)- Return kernel evaluated on the given discretization. - kernel_and_grad - __init__(delta, n_dim, kernel, kernel_length=1.0, lower=0.0, upper=1.0, grad_kernel=None)¶
 - Methods - __init__(delta, n_dim, kernel[, ...])- grad_eval(kernel_params, time_values)- Return kernel's gradient evaluated on the given discretization. - intensity_eval(baseline, alpha, ...)- Return the intensity function evaluated on the entire grid. - kernel_and_grad(kernel_params, time_values)- kernel_eval(kernel_params, time_values)- Return kernel evaluated on the given discretization.