hidimstat

HiDimStat: High-dimensional statistical inference tool for Python

Build CircleCI/Documentation codecov CodeStyle

The HiDimStat package provides statistical inference methods to solve the problem of support recovery in the context of high-dimensional and spatially structured data.

Installation

We recommend using HiDimStat with Python 3.12. For installation, we recommend using conda for python environment management. You can do so by running the following commands from the terminal

conda create -n hidimstat python=3.12
conda activate hidimstat
pip install hidimstat

Or if you want the latest version available (for example to contribute to the development of this project):

pip install -U git+https://github.com/mind-inria/hidimstat.git

or

git clone https://github.com/mind-inria/hidimstat.git
cd hidimstat
pip install -e .

Dependencies

joblib
numpy
panda
scipy
scikit-learn

To run examples it is neccessary to install matplotlib, and to run tests it is also needed to install pytest.

Documentation & Examples

All the documentation of HiDimStat is available at https://mind-inria.github.io/hidimstat/.

As of now in the examples folder there are three Python scripts that illustrate how to use the main HiDimStat functions. In each script we handle a different kind of dataset:

# For example run the following command in terminal
python plot_2D_simulation_example.py

References

The algorithms developed in this package have been detailed in several conference/journal articles that can be downloaded at https://mind-inria.github.io/research.html.

Main references:

Ensemble of Clustered desparsified Lasso (ECDL):

Aggregation of multiple Knockoffs (AKO):

Application to decoding (fMRI data):

Application to source localization (MEG/EEG data):

Single/Group statistically validated importance using conditional permutations:

If you use our packages, we would appreciate citations to the relevant aforementioned papers.

Other useful references:

For de-sparsified(or de-biased) Lasso:

For Knockoffs Inference:

License

This project is licensed under the BSD 2-Clause License.

Acknowledgments

This project has been funded by Labex DigiCosme (ANR-11-LABEX-0045-DIGICOSME) as part of the program “Investissement d’Avenir” (ANR-11-IDEX-0003-02), by the Fast Big project (ANR-17-CE23-0011) and the KARAIB AI Chair (ANR-20-CHIA-0025-01). This study has also been supported by the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 945539, Human Brain Project SGA3).