.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/plot_dcrt_example.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_plot_dcrt_example.py: Distilled Conditional Randomization Test (dCRT) using Lasso vs Random Forest learners ===================================================================================== This example compares the performance of d0crt based on the lasso (1) and random forest (2) implementations. The number of repetitions is set to 10. The metrics used are the type-I error and the power .. GENERATED FROM PYTHON SOURCE LINES 12-14 Imports needed for this script ------------------------------ .. GENERATED FROM PYTHON SOURCE LINES 14-26 .. code-block:: Python import matplotlib.pyplot as plt import numpy as np from hidimstat.dcrt import dcrt_zero from hidimstat.scenario import multivariate_1D_simulation plt.rcParams.update({"font.size": 21}) typeI_error = {"Lasso": [], "Forest": []} power = {"Lasso": [], "Forest": []} .. GENERATED FROM PYTHON SOURCE LINES 27-29 Processing the computations --------------------------- .. GENERATED FROM PYTHON SOURCE LINES 29-70 .. code-block:: Python for sim_ind in range(10): print(f"Processing: {sim_ind+1}") np.random.seed(sim_ind) # Number of observations n = 1000 # Number of variables p = 10 # Number of relevant variables n_signal = 2 # Signal-to-noise ratio snr = 4 # Correlation coefficient rho = 0.8 # Nominal false positive rate alpha = 5e-2 X, y, _, __ = multivariate_1D_simulation( n_samples=n, n_features=p, support_size=n_signal, rho=rho, seed=sim_ind ) # Applying a reLu function on the outcome y to get non-linear relationships y = np.maximum(0.0, y) ## dcrt Lasso ## results_lasso = dcrt_zero(X, y, screening=False, verbose=True) typeI_error["Lasso"].append( sum(results_lasso[1][n_signal:] < alpha) / (p - n_signal) ) power["Lasso"].append(sum(results_lasso[1][:n_signal] < alpha) / (n_signal)) ## dcrt Random Forest ## results_forest = dcrt_zero( X, y, screening=False, statistic="randomforest", verbose=True ) typeI_error["Forest"].append( sum(results_forest[1][n_signal:] < alpha) / (p - n_signal) ) power["Forest"].append(sum(results_forest[1][:n_signal] < alpha) / (n_signal)) .. rst-class:: sphx-glr-script-out .. code-block:: none Processing: 1 Processing: 2 Processing: 3 Processing: 4 Processing: 5 Processing: 6 Processing: 7 Processing: 8 Processing: 9 Processing: 10 .. GENERATED FROM PYTHON SOURCE LINES 71-73 Plotting the comparison ----------------------- .. GENERATED FROM PYTHON SOURCE LINES 73-86 .. code-block:: Python fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(15, 10)) ax[0].set_title("Type-I Error") ax[0].boxplot(typeI_error.values()) ax[0].set_xticklabels(typeI_error.keys()) ax[0].axhline(linewidth=1, color="r") ax[1].set_title("Power") ax[1].boxplot(power.values()) ax[1].set_xticklabels(power.keys()) ax[1].set_ylim(0.5, 1) plt.show() .. image-sg:: /auto_examples/images/sphx_glr_plot_dcrt_example_001.png :alt: Type-I Error, Power :srcset: /auto_examples/images/sphx_glr_plot_dcrt_example_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** (1 minutes 2.874 seconds) **Estimated memory usage:** 212 MB .. _sphx_glr_download_auto_examples_plot_dcrt_example.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_dcrt_example.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_dcrt_example.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_dcrt_example.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_