snake.core.engine.nufft
#
Acquisition engine using nufft.
Module Contents#
Classes#
Acquisition engine using nufft. |
API#
- class snake.core.engine.nufft.NufftAcquisitionEngine[source]#
Bases:
snake.core.engine.base.BaseAcquisitionEngine
Acquisition engine using nufft.
- __engine_name__ = 'NUFFT'#
- __mp_mode__ = 'spawn'#
- _job_trajectories(dataset: ismrmrd.Dataset, hdr: ismrmrd.xsd.ismrmrdHeader, sim_conf: snake.core.simulation.SimConfig, shot_idx: collections.abc.Sequence[int] | int) numpy.typing.NDArray [source]#
Get Non Cartesian trajectories from the dataset.
- Returns:
The trajectories.
- Return type:
NDArray
- static _init_model_nufft(samples: numpy.typing.NDArray, sim_conf: snake.core.simulation.SimConfig, backend: str, slice_2d: bool = False) mrinufft.operators.FourierOperatorBase [source]#
Initialize the nufft operator.
- static _job_model_T2s(phantom: snake.core.phantom.Phantom, dyn_datas: list[snake.core.phantom.DynamicData], sim_conf: snake.core.simulation.SimConfig, trajectories: numpy.typing.NDArray, nufft_backend: str, slice_2d: bool = False) numpy.ndarray [source]#
Acquire k-space data with T2s relaxation effect.
- static _job_model_simple(phantom: snake.core.phantom.Phantom, dyn_datas: list[snake.core.phantom.DynamicData], sim_conf: snake.core.simulation.SimConfig, trajectories: numpy.typing.NDArray, nufft_backend: str, slice_2d: bool = False) numpy.ndarray [source]#
Acquire k-space data. No T2s decay.
- _write_chunk_data(dataset: ismrmrd.Dataset, chunk: collections.abc.Sequence[int], chunk_data: numpy.typing.NDArray) None [source]#