API Documentation

Estimators

Functions

aggregate_quantiles(list_one_sided_pval[, ...])

Aggregation of survival function values by adaptive quantile procedure

clustered_inference(X_init, y, ward, n_clusters)

Clustered inference algorithm

data_simulation

desparsified_lasso(X, y[, dof_ajdustement, ...])

Desparsified Lasso with confidence intervals

ensemble_clustered_inference(X_init, y, ...)

Ensemble clustered inference algorithm

group_reid(X, Y[, stationary, method, ...])

Estimation of the covariance matrix using group Reid procedure

hd_inference(X, y, method[, n_jobs, memory, ...])

Wrap-up high-dimensional inference procedures

knockoff_aggregation(X, y[, centered, ...])

Aggregation of Multiple knockoffs

model_x_knockoff(X, y[, fdr, offset, ...])

Model-X Knockoff

multivariate_1D_simulation([n_samples, ...])

Generate 1D data with Toeplitz design matrix

permutation_test(X, y, estimator[, ...])

Permutation test

permutation_test_pval(weights, ...)

Compute p-value from permutation test

reid(X, y[, eps, tol, max_iter, n_jobs, seed])

Estimation of noise standard deviation using Reid procedure

empirical_thresholding(X, y[, linear_estimator])

Perform empirical thresholding on the input data and target using a linear estimator.

zscore_from_pval(pval[, one_minus_pval, distrib])

Computing z-scores from one-sided p-values.

Classes

LOCO(estimator, loss, method, random_state, ...)

Leave-One-Covariate-Out (LOCO)

CPI(estimator, imputation_model, ...)

Conditional Permutation Importance (CPI) algorithm.

PermutationImportance(estimator, ...)