API#
Estimators#
Functions#
|
Aggregation of survival function values by adaptive quantile procedure |
|
Clustered inference algorithm |
|
Desparsified Lasso |
|
Calculate confidence intervals and p-values for desparsified lasso estimators. This function computes confidence intervals for the desparsified lasso estimator beta_hat. It can also return p-values derived from these confidence intervals. Parameters ---------- n_samples : float The number of samples beta_hat : ndarray, shape (n_features,) The desparsified lasso coefficient estimates. sigma_hat : float Estimated noise level. precision_diagonal : ndarray, shape (n_features,) Diagonal elements of the precision matrix estimate. confidence : float, default=0.95 Confidence level for intervals, must be in [0, 1]. distribution : str, default="norm" Distribution to use for p-value calculation. Currently only "norm" supported. epsilon : float, default=1e-14 Small value to avoid numerical issues in p-value calculation. Returns ------- pval : ndarray, shape (n_features,) P-values pval_corr : ndarray, shape (n_features,) Corrected p-values one_minus_pval : ndarray, shape (n_features,) 1 - p-values one_minus_pval_corr : ndarray, shape (n_features,) 1 - corrected p-values confidence_bound_min : ndarray, shape (n_features,) Lower bounds of confidence intervals confidence_bound_max : ndarray, shape (n_features,) Upper bounds of confidence intervals. |
|
Compute p-values for the desparsified group Lasso estimator using chi-squared or F tests |
|
Ensemble clustered inference algorithm |
|
Residual sum of squares based estimators for noise standard deviation estimation. |
|
Wrap-up high-dimensional inference procedures |
|
Aggregation of Multiple knockoffs |
|
Model-X Knockoff |
|
Permutation test |
|
Compute p-value from permutation test |
|
Residual sum of squares based estimators for noise standard deviation estimation. |
|
Perform empirical thresholding on the input data and target using a linear estimator. |
|
Computing z-scores from one-sided p-values. |
Classes#
|
|
|
|
|
|
|