hidimstat.desparsified_group_lasso_pvalue#
- hidimstat.desparsified_group_lasso_pvalue(beta_hat, theta_hat, precision_diagonal, test='chi2')[source]#
Compute p-values for the desparsified group Lasso estimator using chi-squared or F tests
- Parameters:
- beta_hatndarray, shape (n_features, n_times)
Estimated parameter matrix from desparsified group Lasso.
- theta_hatndarray, shape (n_times, n_times)
Estimated precision matrix (inverse covariance).
- precision_diagonalndarray, shape (n_features,)
Diagonal elements of the precision matrix.
- test{‘chi2’, ‘F’}, default=’chi2’
Statistical test for computing p-values: - ‘chi2’: Chi-squared test (recommended for large samples) - ‘F’: F-test
- Returns:
- pvalndarray, shape (n_features,)
Raw p-values, numerically accurate for positive effects (p-values close to 0).
- pval_corrndarray, shape (n_features,)
P-values corrected for multiple testing using Benjamini-Hochberg procedure.
- one_minus_pvalndarray, shape (n_features,)
1 - p-values, numerically accurate for negative effects (p-values close to 1).
- one_minus_pval_corrndarray, shape (n_features,)
1 - corrected p-values.
Notes
The Chi-squared test assumes asymptotic normality while the F-test is preferable for small sample sizes. P-values are computed based on score statistics from the estimated coefficients and precision matrix.