hidimstat.ensemble_clustered_inference#

hidimstat.ensemble_clustered_inference(X_init, y, ward, n_clusters, train_size=0.3, groups=None, inference_method='desparsified-lasso', seed=0, ensembling_method='quantiles', gamma_min=0.2, n_bootstraps=25, n_jobs=1, memory=None, verbose=1, **kwargs)[source]#

Ensemble clustered inference algorithm

Parameters:
X_initndarray, shape (n_samples, n_features)

Original data (uncompressed).

yndarray, shape (n_samples,) or (n_samples, n_times)

Target.

wardsklearn.cluster.FeatureAgglomeration

Scikit-learn object that computes Ward hierarchical clustering.

n_clustersint

Number of clusters used for the compression.

train_sizefloat, optional (default=0.3)

Fraction of samples used to compute the clustering. If train_size = 1, clustering is not random since all samples are used to compute the clustering.

groupsndarray, shape (n_samples,), optional (default=None)

Group labels for each sample. If not None, groups is used to build the subsamples that serve to compute the clustering.

inference_methodstr, optional (default=’desparsified-lasso’)

Method used for inference. Currently, the two available methods are ‘desparsified-lasso’ and ‘group-desparsified-lasso’. Use ‘desparsified-lasso’ for non-temporal data and ‘group-desparsified-lasso’ for temporal data.

seed: int, optional (default=0)

Seed used for generating the first random subsample of the data. This seed controls the clustering randomness.

ensembling_methodstr, optional (default=’quantiles’)

Method used for ensembling. Currently, the two available methods are ‘quantiles’ and ‘median’.

gamma_minfloat, optional (default=0.2)

Lowest gamma-quantile considered to compute the adaptive quantile aggregation formula. This parameter is used only if ensembling_method is ‘quantiles’.

n_bootstrapsint, optional (default=25)

Number of clustered inference algorithm solutions to compute before ensembling.

n_jobsint or None, optional (default=1)

Number of CPUs used to compute several clustered inference algorithms simultaneously.

memoryjoblib.Memory or str, optional (default=None)

Used to cache the output of the clustering and inference computation. By default, no caching is done. If provided, it should be the path to the caching directory or a joblib.Memory object.

verbose: int, optional (default=1)

The verbosity level. If verbose > 0, a message is printed before running the clustered inference.

**kwargs:

Arguments passed to the statistical inference function.

Returns:
beta_hatndarray, shape (n_features,) or (n_features, n_times)

Estimated parameter vector or matrix.

pvalndarray, shape (n_features,)

p-value, with numerically accurate values for positive effects (i.e., for p-values close to zero).

pval_corrndarray, shape (n_features,)

p-value corrected for multiple testing.

one_minus_pvalndarray, shape (n_features,)

One minus the p-value, with numerically accurate values for negative effects (i.e., for p-values close to one).

one_minus_pval_corrndarray, shape (n_features,)

One minus the p-value corrected for multiple testing.

References

[1]

Chevalier, J. A., Nguyen, T. B., Thirion, B., & Salmon, J. (2021). Spatially relaxed inference on high-dimensional linear models. arXiv preprint arXiv:2106.02590.

Examples using hidimstat.ensemble_clustered_inference#

Support recovery on simulated data (2D)

Support recovery on simulated data (2D)

Support recovery on fMRI data

Support recovery on fMRI data