hidimstat.PermutationImportance¶
- class hidimstat.PermutationImportance(estimator, n_permutations: int = 50, loss: callable = <function root_mean_squared_error>, score_proba: bool = False, random_state: int = None, n_jobs: int = 1)¶
- Parameters:
- estimator: scikit-learn compatible estimator
The predictive model.
- n_permutations: int, default=50
Number of permutations to perform.
- loss: callable, default=root_mean_squared_error
Loss function to evaluate the model performance.
- score_proba: bool, default=False
Whether to use the predict_proba method of the estimator.
- random_state: int, default=None
Random seed for the permutation.
- n_jobs: int, default=1
Number of jobs to run in parallel.
References
- __init__(estimator, n_permutations: int = 50, loss: callable = <function root_mean_squared_error>, score_proba: bool = False, random_state: int = None, n_jobs: int = 1)¶
Methods
__init__
(estimator[, n_permutations, loss, ...])fit
(X[, y, groups])get_metadata_routing
()Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
predict
(X, y)Compute the prediction of the model with permuted data for each group.
score
(X, y)Compute the importance scores for each group of covariates.
set_fit_request
(*[, groups])Request metadata passed to the
fit
method.set_params
(**params)Set the parameters of this estimator.