hidimstat.desparsified_lasso_pvalue#

hidimstat.desparsified_lasso_pvalue(n_samples, beta_hat, sigma_hat, precision_diagonal, confidence=0.95, distribution='norm', epsilon=1e-14)[source]#

Calculate confidence intervals and p-values for desparsified lasso estimators. This function computes confidence intervals for the desparsified lasso estimator beta_hat. It can also return p-values derived from these confidence intervals. Parameters ———- n_samples : float

The number of samples

beta_hatndarray, shape (n_features,)

The desparsified lasso coefficient estimates.

sigma_hatfloat

Estimated noise level.

precision_diagonalndarray, shape (n_features,)

Diagonal elements of the precision matrix estimate.

confidencefloat, default=0.95

Confidence level for intervals, must be in [0, 1].

distributionstr, default=”norm”

Distribution to use for p-value calculation. Currently only “norm” supported.

epsilonfloat, default=1e-14

Small value to avoid numerical issues in p-value calculation.

Returns#

pvalndarray, shape (n_features,)

P-values

pval_corrndarray, shape (n_features,)

Corrected p-values

one_minus_pvalndarray, shape (n_features,)

1 - p-values

one_minus_pval_corrndarray, shape (n_features,)

1 - corrected p-values

confidence_bound_minndarray, shape (n_features,)

Lower bounds of confidence intervals

confidence_bound_maxndarray, shape (n_features,)

Upper bounds of confidence intervals

Examples using hidimstat.desparsified_lasso_pvalue#

Support recovery on simulated data (2D)

Support recovery on simulated data (2D)