hidimstat.reid¶
- hidimstat.reid(X, y, eps=0.01, tol=0.0001, max_iter=10000, n_jobs=1, seed=0)¶
Estimation of noise standard deviation using Reid procedure
- Parameters:
- Xndarray, shape (n_samples, n_features)
Data.
- yndarray, shape (n_samples,)
Target.
- eps: float, optional (default=1e-2)
Length of the cross-validation path. eps=1e-2 means that alpha_min / alpha_max = 1e-2.
- tolfloat, optional (default=1e-4)
The tolerance for the optimization: if the updates are smaller than tol, the optimization code checks the dual gap for optimality and continues until it is smaller than tol.
- max_iterint, optional (default=1e4)
The maximum number of iterations.
- n_jobsint or None, optional (default=1)
Number of CPUs to use during the cross validation.
- seed: int, optional (default=0)
Seed passed in the KFold object which is used to cross-validate LassoCV. This seed controls the partitioning randomness.
- Returns:
- sigma_hatfloat
Estimated noise standard deviation.
- beta_hatarray, shape (n_features,)
Estimated parameter vector.
References
[1]Reid, S., Tibshirani, R., & Friedman, J. (2016). A study of error variance estimation in lasso regression. Statistica Sinica, 35-67.