hidimstat.reid#

hidimstat.reid(X, y, epsilon=0.01, tolerance=0.0001, max_iterance=10000, n_splits=5, n_jobs=1, seed=0, group=False, stationary=True, method='median', order=1)[source]#

Residual sum of squares based estimators for noise standard deviation estimation.

This implementation follows the procedure described in [1] and [Reid et al., 2016]. It uses Lasso with cross-validation to estimate both the noise standard deviation and model coefficients.

For group, the implementation is based on the procedure from [2].

Parameters:
Xndarray, shape (n_samples, n_features)

Input data matrix.

yndarray, shape (n_samples,)/(n_samples, n_times)

Target vector. The time means the presence of groups.

epsilonfloat, optional (default=1e-2)

Length of the cross-validation path, where alpha_min / alpha_max = eps. Smaller values create a finer grid.

tolerancefloat, optional (default=1e-4)

Tolerance for optimization convergence. The algorithm stops when updates are smaller than tol and dual gap is smaller than tol.

max_iterationint, optional (default=10000)

Maximum number of iterations for the optimization algorithm.

n_splitsint, optional (default=5)

Number of folds for cross-validation.

n_jobsint, optional (default=1)

Number of parallel jobs for cross-validation. -1 means using all processors.

seedint, optional (default=0)

Random seed for reproducible cross-validation splits.

stationarybool, (default=True)

Whether noise has constant magnitude across time steps.

method{‘median’, ‘AR’}, (default=’simple’)

Covariance estimation method: - ‘median’: Uses median correlation between consecutive time steps - ‘AR’: Uses Yule-Walker method with specified order

orderint, default=1

Order of AR model when method=’AR’. Must be < n_times.

Returns:
sigma_hat/cov_hatfloat/ndarray, shape (n_times, n_times)

Estimated noise standard deviation based on residuals or estimated covariance matrix for group.

beta_hatndarray, shape (n_features,)/(n_features, n_times)

Estimated sparse coefficient vector from Lasso regression.

References