Note
Go to the end to download the full example code. or to run this example in your browser via Binder
Animated 2D trajectories#
An animation to show 2D trajectory customization.
import matplotlib.animation as animation
from matplotlib.gridspec import GridSpec
import matplotlib.pyplot as plt
import numpy as np
import mrinufft.trajectories.display as mtd
import mrinufft.trajectories.trajectory2D as mtt
from mrinufft.trajectories.display import displayConfig
Script options#
Trajectory generation#
# Initialize trajectory function
functions = [
# Radial
("Radial", lambda x: mtt.initialize_2D_radial(x, Ns)),
("Radial", lambda x: mtt.initialize_2D_radial(Nc, Ns, tilt=x)),
(
"Radial",
lambda x: mtt.initialize_2D_radial(Nc, Ns, tilt=(1 + x) * np.pi / Nc, in_out=x),
),
("Radial", lambda x: mtt.initialize_2D_radial(Nc, Ns, tilt=x)),
("Radial", lambda x: mtt.initialize_2D_radial(Nc, Ns, tilt="uniform")),
# Spiral
("Spiral", lambda x: mtt.initialize_2D_spiral(Nc, Ns, nb_revolutions=x)),
("Spiral", lambda x: mtt.initialize_2D_spiral(Nc, Ns, spiral=x)),
("Spiral", lambda x: mtt.initialize_2D_spiral(Nc, Ns, spiral=x)),
("Spiral", lambda x: mtt.initialize_2D_spiral(Nc, Ns, nb_revolutions=x)),
("Spiral", lambda x: mtt.initialize_2D_spiral(Nc, Ns, nb_revolutions=x)),
("Spiral", lambda x: mtt.initialize_2D_spiral(Nc, Ns, nb_revolutions=1e-5)),
# Cones
("Cones", lambda x: mtt.initialize_2D_cones(Nc, Ns, nb_zigzags=x)),
("Cones", lambda x: mtt.initialize_2D_cones(Nc, Ns, width=x)),
("Cones", lambda x: mtt.initialize_2D_cones(Nc, Ns, width=x)),
("Cones", lambda x: mtt.initialize_2D_cones(Nc, Ns, width=0)),
# Sinusoids
(
"Sinusoids",
lambda x: mtt.initialize_2D_sinusoide(Nc, Ns, nb_zigzags=3 * x, width=x),
),
(
"Sinusoids",
lambda x: mtt.initialize_2D_sinusoide(Nc, Ns, nb_zigzags=3 * x, width=x),
),
("Sinusoids", lambda x: mtt.initialize_2D_sinusoide(Nc, Ns, nb_zigzags=0, width=0)),
# Rings
("Rings", lambda x: mtt.initialize_2D_rings(x, Ns, nb_rings=x)[::-1]),
("Rings", lambda x: mtt.initialize_2D_rings(x, Ns, nb_rings=nb_repetitions)[::-1]),
("Rings", lambda x: mtt.initialize_2D_rings(Nc, Ns, nb_rings=nb_repetitions)[::-1]),
# Rosette
("Rosette", lambda x: mtt.initialize_2D_rosette(Nc, Ns, coprime_index=x)),
("Rosette", lambda x: mtt.initialize_2D_rosette(Nc, Ns, coprime_index=30)),
# Waves
("Waves", lambda x: mtt.initialize_2D_waves(Nc, Ns, nb_zigzags=6 * x, width=x)),
("Waves", lambda x: mtt.initialize_2D_waves(Nc, Ns, nb_zigzags=6 * x, width=x)),
("Waves", lambda x: mtt.initialize_2D_waves(Nc, Ns, nb_zigzags=6, width=1)),
# Lissajous
("Lissajous", lambda x: mtt.initialize_2D_lissajous(Nc, Ns, density=x)),
("Lissajous", lambda x: mtt.initialize_2D_lissajous(Nc, Ns, density=10)),
]
# Initialize trajectory arguments
arguments = [
# Radial
np.around(np.linspace(1, Nc, 4 * nb_frames)).astype(int), # Nc
np.linspace(2 * np.pi / Nc, np.pi / Nc, 2 * nb_frames), # tilt
np.around(np.sin(np.linspace(0, 2 * np.pi, 2 * nb_frames))).astype(bool), # in_out
np.linspace(np.pi / Nc, 2 * np.pi / Nc, 2 * nb_frames), # tilt
[None] * nb_frames, # None
# Spiral
np.linspace(1e-5, 1, 2 * nb_frames), # nb_revolutions
np.linspace(1, np.sqrt(1 / 3), 2 * nb_frames) ** 2, # spiral
np.linspace(1 / 3, 1, 2 * nb_frames), # spiral
np.linspace(1, 3, 2 * nb_frames), # nb_revolutions
np.linspace(3, 1e-5, 4 * nb_frames), # nb_revolutions
[None] * nb_frames, # None
# Cones
np.linspace(0, 5, 2 * nb_frames), # nb_zigzags
np.linspace(1, 2, nb_frames), # width
np.linspace(2, 0, 2 * nb_frames), # width
[None] * nb_frames, # None
# Sinusoids
np.linspace(0, 1, 2 * nb_frames), # width & nb_zigzags
np.linspace(1, 0, 2 * nb_frames), # width & nb_zigzags
[None] * nb_frames, # None
# Rings
np.around(np.linspace(1, nb_repetitions, 4 * nb_frames)).astype(
int
), # Nc & nb_rings
np.around(np.linspace(nb_repetitions, Nc, 2 * nb_frames)).astype(int), # Nc
[None] * nb_frames, # None
# Rosette
np.around(np.linspace(0, np.sqrt(30), 6 * nb_frames) ** 2).astype(
int
), # coprime_index
[None] * nb_frames, # None
# Waves
np.linspace(0, 2, 4 * nb_frames), # width & nb_zigzags
np.linspace(2, 1, 2 * nb_frames), # width & nb_zigzags
[None] * nb_frames, # None
# Lissajous
np.linspace(1, 10, 6 * nb_frames), # density
[None] * nb_frames, # None
]
Animation rendering#
frame_setup = [
(f, name, arg)
for (name, f), args in list(zip(functions, arguments))
for arg in args
]
fig = plt.figure(figsize=(2 * figsize, figsize))
gs = GridSpec(3, 2)
ksp_ax = fig.add_subplot(gs[:, 0])
axs_grad = [fig.add_subplot(gs[i, 1]) for i in range(3)]
def plot_frame(frame_data):
func, name, arg = frame_data
ksp_ax.clear()
[ax.clear() for ax in axs_grad]
trajectory = func(arg)
ksp_ax.set_title(name, fontsize=displayConfig.fontsize)
mtd.display_2D_trajectory(trajectory, one_shot=one_shot, subfigure=ksp_ax)
ksp_ax.set_aspect("equal")
mtd.display_gradients_simply(
trajectory,
shot_ids=[one_shot],
subfigure=axs_grad,
uni_gradient="k",
uni_signal="gray",
)
ani = animation.FuncAnimation(fig, plot_frame, frame_setup, interval=50, repeat=False)
plt.show()
# sphinx_gallery_thumbnail_number = -1