MRInumpy#
- class mrinufft.operators.interfaces.nudft_numpy.MRInumpy(samples, shape, n_coils=1, smaps=None)[source]#
Bases:
FourierOperatorCPUMRI operator using numpy NUDFT backend.
For testing purposes only, as it is very slow.
Methods
__init__adj_opNon Cartesian MRI adjoint operator.
cgConjugate Gradient method to solve the inverse problem.
check_shapeValidate the shapes of the image or k-space data against operator shapes.
compute_densityCompute the density compensation weights and set it.
compute_smapsCompute the sensitivity maps and set it.
data_consistencyCompute the gradient data consistency.
get_lipschitz_cstReturn the Lipschitz constant of the operator.
make_autogradMake a new Operator with autodiff support.
opNon Cartesian MRI forward operator.
with_autogradReturn a Fourier operator with autograd capabilities.
with_off_resonance_correctionReturn a new operator with Off Resonnance Correction.
Attributes
autograd_availableavailablebackendcpx_dtypeReturn complex floating precision of the operator.
densityDensity compensation of the operator.
dtypeReturn floating precision of the operator.
interfacesn_batchsNumber of coils for the operator.
n_coilsNumber of coils for the operator.
n_samplesReturn the number of samples used by the operator.
ndimNumber of dimensions in image space of the operator.
norm_factorNormalization factor of the operator.
samplesReturn the samples used by the operator.
shapeShape of the image space of the operator.
smapsSensitivity maps of the operator.
uses_densityReturn True if the operator uses density compensation.
uses_senseReturn True if the operator uses sensitivity maps.