MRIStackedNUFFTGPU#
- class mrinufft.operators.stacked.MRIStackedNUFFTGPU(samples, shape, smaps, n_coils=1, n_batchs=1, n_trans=1, z_index='auto', squeeze_dims=False, smaps_cached=False, density=False, backend='cufinufft', **kwargs)[source]#
Bases:
MRIStackedNUFFT
Stacked NUFFT Operator for MRI using GPU only backend.
This requires cufinufft to be installed.
- Parameters:
samples (array-like) – Sample locations in a 2D kspace
shape (tuple) – Shape of the image.
z_index (array-like) – Cartesian z index of masked plan. if “auto” the z_index is computed from the samples, if they are 3D, using the last coordinate.
smaps (array-like) – Sensitivity maps.
n_coils (int) – Number of coils.
n_batchs (int) – Number of batchs.
**kwargs (dict) – Additional arguments to pass to the backend.
Methods
__init__
Adjoint operator.
check_shape
Validate the shapes of the image or k-space data against operator shapes.
compute_density
Compute the density compensation weights and set it.
compute_smaps
Compute the sensitivity maps and set it.
data_consistency
Compute the gradient data consistency.
Return the Lipschitz constant of the operator.
make_autograd
Make a new Operator with autodiff support.
Forward operator.
with_autograd
Return a Fourier operator with autograd capabilities.
with_off_resonance_correction
Return a new operator with Off Resonnance Correction.
Attributes
autograd_available
available
backend
cpx_dtype
Return complex floating precision of the operator.
density
Density compensation of the operator.
dtype
Return dtype.
interfaces
n_coils
Number of coils for the operator.
n_samples
Return number of samples.
ndim
Number of dimensions in image space of the operator.
Norm factor of the operator.
samples
Return samples as a N_slice x N_samples x 3 array.
shape
Shape of the image space of the operator.
smaps
Sensitivity maps of the operator.
uses_density
Return True if the operator uses density compensation.
uses_sense
Return True if the operator uses sensitivity maps.
- property norm_factor#
Norm factor of the operator.