MRISigpyNUFFT#
- class mrinufft.operators.interfaces.sigpy.MRISigpyNUFFT(samples, shape, density=False, n_coils=1, n_batchs=1, n_trans=1, smaps=None, squeeze_dims=True, **kwargs)[source]#
Bases:
FourierOperatorCPUNUFFT using SigPy.
This is a wrapper around the SigPy NUFFT operator.
Methods
__init__adj_opNon Cartesian MRI adjoint operator.
cgConjugate Gradient method to solve the inverse problem.
check_shapeValidate the shapes of the image or k-space data against operator shapes.
compute_densityCompute the density compensation weights and set it.
compute_smapsCompute the sensitivity maps and set it.
data_consistencyCompute the gradient data consistency.
get_lipschitz_cstReturn the Lipschitz constant of the operator.
make_autogradMake a new Operator with autodiff support.
opNon Cartesian MRI forward operator.
with_autogradReturn a Fourier operator with autograd capabilities.
with_off_resonance_correctionReturn a new operator with Off Resonnance Correction.
Attributes
autograd_availableavailablebackendcpx_dtypeReturn complex floating precision of the operator.
densityDensity compensation of the operator.
dtypeReturn floating precision of the operator.
interfacesn_batchsNumber of coils for the operator.
n_coilsNumber of coils for the operator.
n_samplesReturn the number of samples used by the operator.
ndimNumber of dimensions in image space of the operator.
Normalization factor of the operator.
samplesReturn the samples used by the operator.
shapeShape of the image space of the operator.
smapsSensitivity maps of the operator.
uses_densityReturn True if the operator uses density compensation.
uses_senseReturn True if the operator uses sensitivity maps.
- property norm_factor#
Normalization factor of the operator.