Source code for mrinufft.extras.sim

"""Simple MR simulation module."""

import numpy as np

from typing import Sequence


[docs] def fse_simulation( M0: np.ndarray, T1: np.ndarray, T2: np.ndarray, TE: float | Sequence[float], TR: float | Sequence[float], ) -> np.ndarray: """Perform simple analytical Fast Spin Echo simulation. Assume that refocusing angles are 180° and k-space center is sampled for each echo in the Echo Train (e.g., as in spiral or radial imaging). Parameters ---------- M0 : np.ndarray Input equilibrium magnetization. T1 : np.ndarray Input T1 in [ms]. T2 : np.ndarray Input T2 in [ms]. TE : float | Sequence[float] Sequence Echo Time in [ms]. TR : float | Sequence[float] Sequence Repetition Time in [ms]. Returns ------- signal : np.ndarray Simulated signal of shape (nTE*nTR, *M0). """ # preprocess sequence parameters TE, TR = np.broadcast_arrays(np.atleast_1d(TE), np.atleast_1d(TR)[:, None]) TE, TR = TE.ravel().astype(np.float32), TR.ravel().astype(np.float32) # preprocess tissue parameters M0, T1, T2 = np.atleast_1d(M0), np.atleast_1d(T1), np.atleast_1d(T2) M0, T1, T2 = M0[..., None], T1[..., None], T2[..., None] T1 += 1e-9 T2 += 1e-9 # compute signal signal = M0 * (1 - np.exp(-(TR - TE) / T1)) * np.exp(-TE / T2) # post process signal = signal[None, ...].swapaxes(0, -1)[..., 0] signal = signal.squeeze() if signal.size == 1: signal = signal.item() return signal