"""Functions to manipulate/modify trajectories."""
import numpy as np
from scipy.interpolate import CubicSpline, interp1d
from .maths import Rv, Rx, Ry, Rz
from .utils import KMAX, initialize_tilt
################
# DIRECT TOOLS #
################
[docs]
def stack(trajectory, nb_stacks, z_tilt=None, hard_bounded=True):
"""Stack 2D or 3D trajectories over the :math:`k_z`-axis.
Parameters
----------
trajectory : array_like
Trajectory in 2D or 3D to stack.
nb_stacks : int
Number of stacks repeating the provided trajectory.
z_tilt : str, optional
Tilt of the stacks, by default `None`.
hard_bounded : bool, optional
Whether the stacks should be strictly within the limits of the k-space.
Returns
-------
array_like
Stacked trajectory.
"""
# Check dimensionality and initialize output
Nc, Ns = trajectory.shape[:2]
if trajectory.shape[-1] == 2:
trajectory = np.concatenate([trajectory, np.zeros((Nc, Ns, 1))], axis=-1)
trajectory = trajectory.reshape((Nc * Ns, 3))
new_trajectory = np.zeros((nb_stacks, Nc * Ns, 3))
# Initialize z-axis with boundaries, and z-rotation
ub, lb = KMAX / nb_stacks, -KMAX / nb_stacks
if hard_bounded:
ub = max(np.max(trajectory[..., 2]), ub)
lb = min(np.min(trajectory[..., 2]), lb)
z_axis = np.linspace(-KMAX - lb, KMAX - ub, nb_stacks)
z_rotation = Rz(initialize_tilt(z_tilt, nb_stacks)).T
# Start stacking the trajectories
new_trajectory[0] = trajectory
new_trajectory[0, :, 2] += z_axis[0]
for i in range(1, nb_stacks):
new_trajectory[i] = new_trajectory[i - 1] @ z_rotation
new_trajectory[i, :, 2] = z_axis[i] + trajectory[..., 2]
return new_trajectory.reshape(nb_stacks * Nc, Ns, 3)
[docs]
def rotate(trajectory, nb_rotations, x_tilt=None, y_tilt=None, z_tilt=None):
"""Rotate 2D or 3D trajectories over the different axes.
Parameters
----------
trajectory : array_like
Trajectory in 2D or 3D to rotate.
nb_rotations : int
Number of rotations repeating the provided trajectory.
x_tilt : str, optional
Tilt of the trajectory over the :math:`k_x`-axis, by default `None`.
y_tilt : str, optional
Tilt of the trajectory over the :math:`k_y`-axis, by default `None`.
z_tilt : str, optional
Tilt of the trajectory over the :math:`k_z`-axis, by default `None`.
Returns
-------
array_like
Rotated trajectory.
"""
# Check dimensionality and initialize output
Nc, Ns = trajectory.shape[:2]
if trajectory.shape[-1] == 2:
trajectory = np.concatenate([trajectory, np.zeros((Nc, Ns, 1))], axis=-1)
trajectory = trajectory.reshape((Nc * Ns, 3))
new_trajectory = np.zeros((nb_rotations, Nc * Ns, 3))
# Start rotating the planes
x_angle = initialize_tilt(x_tilt, nb_rotations)
y_angle = initialize_tilt(y_tilt, nb_rotations)
z_angle = initialize_tilt(z_tilt, nb_rotations)
new_trajectory[0] = trajectory
for i in range(1, nb_rotations):
rotation = (Rx(i * x_angle) @ Ry(i * y_angle) @ Rz(i * z_angle)).T
new_trajectory[i] = new_trajectory[0] @ rotation
return new_trajectory.reshape(nb_rotations * Nc, Ns, 3)
[docs]
def precess(
trajectory,
nb_rotations,
tilt="golden",
half_sphere=False,
partition="axial",
axis=None,
):
"""Rotate trajectories as a precession around the :math:`k_z`-axis.
Parameters
----------
trajectory : array_like
Trajectory in 2D or 3D to rotate.
nb_rotations : int
Number of rotations repeating the provided trajectory while precessing.
tilt : str, optional
Angle tilt between consecutive rotations around the :math:`k_z`-axis,
by default "golden".
half_sphere : bool, optional
Whether the precession should be limited to the upper half
of the k-space sphere.
It is typically used for in-out trajectories or planes.
partition : str, optional
Partition type between an "axial" or "polar" split of the
:math:`k_z`-axis, designating whether the axis should be fragmented
by radius or angle respectively, by default "axial".
axis : int, array_like, optional
Axis selected for alignment reference when rotating the trajectory
around the :math:`k_z`-axis, generally corresponding to the shot
direction for single shot ``trajectory`` inputs. It can either
be an integer for one of the three k-space axes, or directly a 3D
array. The default behavior when `None` is to select the last
coordinate of the first shot as the axis, by default `None`.
Returns
-------
array_like
Precessed trajectory.
"""
# Check for partition option error
if partition not in ["polar", "axial"]:
raise NotImplementedError(f"Unknown partition type: {partition}")
# Check dimensionality and initialize output
Nc, Ns = trajectory.shape[:2]
if trajectory.shape[-1] == 2:
trajectory = np.concatenate([trajectory, np.zeros((Nc, Ns, 1))], axis=-1)
trajectory = trajectory.reshape((Nc * Ns, 3))
new_trajectory = np.zeros((nb_rotations, Nc * Ns, 3))
# Determine direction vectors on a sphere
vectors = np.zeros((nb_rotations, 3))
phi = initialize_tilt(tilt, nb_rotations) * np.arange(nb_rotations)
vectors[:, 2] = np.linspace(-1 + half_sphere, 1, nb_rotations)
if partition == "polar":
vectors[:, 2] = np.sin(np.pi / 2 * vectors[:, 2])
radius = np.sqrt(1 - vectors[:, 2] ** 2)
vectors[:, 0] = np.cos(phi) * radius
vectors[:, 1] = np.sin(phi) * radius
# Select rotation axis when axis is not already a vector
if axis is None:
axis_vector = np.copy(trajectory[Ns - 1])
axis_vector /= np.linalg.norm(axis_vector)
elif isinstance(axis, int):
axis_vector = np.zeros(3)
axis_vector[axis] = 1
else:
axis_vector = axis
# Rotate initial trajectory
for i in np.arange(nb_rotations):
rotation = Rv(axis_vector, vectors[i], normalize=False).T
new_trajectory[i] = trajectory @ rotation
return new_trajectory.reshape((nb_rotations * Nc, Ns, 3))
[docs]
def conify(
trajectory,
nb_cones,
z_tilt=None,
in_out=False,
max_angle=np.pi / 2,
borderless=True,
):
"""Distort 2D or 3D trajectories into cones along the :math:`k_z`-axis.
Parameters
----------
trajectory : array_like
Trajectory to conify.
nb_cones : int
Number of cones repeating the provided trajectory.
z_tilt : str, optional
Tilt of the trajectory over the :math:`k_z`-axis, by default `None`.
in_out : bool, optional
Whether to account for the in-out nature of some trajectories
to avoid hard angles around the center, by default False.
max_angle : float, optional
Maximum angle of the cones, by default pi / 2.
borderless : bool, optional
Whether the cones should reach `max_angle` or not,
and avoid 1D cones if equal to pi / 2, by default True.
Returns
-------
array_like
Conified trajectory.
"""
# Check dimensionality and initialize output
Nc, Ns = trajectory.shape[:2]
if trajectory.shape[-1] == 2:
trajectory = np.concatenate([trajectory, np.zeros((Nc, Ns, 1))], axis=-1)
trajectory = trajectory.reshape((Nc * Ns, 3))
new_trajectory = np.zeros((nb_cones, Nc * Ns, 3))
# Initialize angles
z_angle = initialize_tilt(z_tilt, nb_cones)
alphas = np.linspace(-max_angle, +max_angle, nb_cones + 2 * borderless)
if borderless:
alphas = alphas[1:-1] # Remove partition borders
# Start processing the trajectory
new_trajectory[:] = trajectory
for i, alpha in enumerate(alphas):
# Apply tilt
rotation = Rz(np.abs(i - nb_cones // 2) * z_angle).T # Symmetrical for in-out
new_trajectory[i] = new_trajectory[i] @ rotation
# Convert to spherical coordinates
norms = np.linalg.norm(new_trajectory[i], axis=-1)
polar_angles = np.arccos(
new_trajectory[i, ..., 2] / np.where(norms == 0, 1, norms)
)
# Conify by changing polar angle
new_trajectory[i, :, 0] = (
new_trajectory[i, :, 0]
/ np.sin(polar_angles)
* np.sin(polar_angles + alpha)
)
new_trajectory[i, :, 1] = (
new_trajectory[i, :, 1]
/ np.sin(polar_angles)
* np.sin(polar_angles + alpha)
)
new_trajectory[i, :, 2] = norms * np.cos(polar_angles + alpha)
new_trajectory = new_trajectory.reshape(nb_cones * Nc, Ns, 3)
# Handle in-out trajectories to avoid hard transition at the center
if in_out:
new_trajectory[:, Ns // 2 :, 2] = -new_trajectory[:, Ns // 2 :, 2]
return new_trajectory
[docs]
def epify(trajectory, Ns_transitions, nb_trains, reverse_odd_shots=False):
"""Create multi-readout shots from trajectory composed of single-readouts.
Assemble multiple single-readout shots together by adding transition
steps in the trajectory to create EPI-like multi-readout shots.
Parameters
----------
trajectory : array_like
Trajectory to change by prolonging and merging the shots.
Ns_transitions : int
Number of samples/steps between the merged readouts.
nb_trains : int
Number of resulting multi-readout shots, or trains.
reverse_odd_shots : bool, optional
Whether to reverse every odd shots such that, as in most
trajectories, even shots end up closer to the start of odd
shots.
Returns
-------
array_like
Trajectory with fewer but longer multi-readout shots.
"""
Nc, Ns, Nd = trajectory.shape
if Nc % nb_trains != 0:
raise ValueError(
"`nb_trains` should divide the number of shots in `trajectory`."
)
nb_shot_per_train = Nc // nb_trains
# Reverse odd shots to facilitate concatenation if requested
trajectory = np.copy(trajectory)
trajectory = trajectory.reshape((nb_trains, -1, Ns, Nd))
if reverse_odd_shots:
trajectory[:, 1::2] = trajectory[:, 1::2, ::-1]
# Assemble shots together per concatenation
assembled_trajectory = []
source_sample_ids = np.concatenate(
[np.arange(Ns) + i * (Ns_transitions + Ns) for i in range(nb_shot_per_train)]
)
target_sample_ids = np.arange(
nb_shot_per_train * Ns + (nb_shot_per_train - 1) * Ns_transitions
)
for i_c in range(nb_trains):
spline = CubicSpline(source_sample_ids, np.concatenate(trajectory[i_c], axis=0))
assembled_trajectory.append(spline(target_sample_ids))
assembled_trajectory = np.array(assembled_trajectory)
return assembled_trajectory
[docs]
def unepify(trajectory, Ns_readouts, Ns_transitions):
"""Recover single-readout shots from multi-readout trajectory.
Reformat an EPI-like trajectory with multiple readouts and transitions
to more single-readout shots by discarding the transition parts.
Note that it can also be applied to any array of shape
(Nc, Ns_readouts + Ns_transitions, ...) such as acquired samples
for example.
Parameters
----------
trajectory : array_like
Trajectory to reduce by discarding transitions between readouts.
Ns_readouts : int
Number of samples within a single readout.
Ns_transitions : int
Number of samples/steps between the readouts.
Returns
-------
array_like
Trajectory with more but shorter single shots.
"""
Nc, Ns, Nd = trajectory.shape
if Ns % (Ns_readouts + Ns_transitions) != Ns_readouts:
raise ValueError(
"`trajectory` shape does not match `Ns_readouts` or `Ns_transitions`."
)
readout_mask = np.zeros(Ns).astype(bool)
for i in range(1, Ns // (Ns_readouts + Ns_transitions) + 2):
readout_mask[
(i - 1) * Ns_readouts
+ (i - 1) * Ns_transitions : i * Ns_readouts
+ (i - 1) * Ns_transitions
] = True
trajectory = trajectory[:, readout_mask, :]
trajectory = trajectory.reshape((-1, Ns_readouts, Nd))
return trajectory
[docs]
def prewind(trajectory, Ns_transitions):
"""Add pre-winding/positioning to the trajectory.
The trajectory is extended to start before the readout
from the k-space center with null gradients and reach
each shot position with the required gradient strength.
Parameters
----------
trajectory : array_like
Trajectory to extend with rewind gradients.
Ns_transitions : int
Number of pre-winding/positioning steps used to leave the
k-space center and prepare for each shot to start.
Returns
-------
array_like
Extended trajectory with pre-winding/positioning.
"""
Nc, Ns, Nd = trajectory.shape
if Ns_transitions < 3:
raise ValueError("`Ns_transitions` should be at least 2.")
# Assemble shots together per concatenation
assembled_trajectory = []
source_sample_ids = np.concatenate([[0, 1], Ns_transitions + np.arange(Ns)])
target_sample_ids = np.arange(Ns_transitions + Ns)
for i_c in range(Nc):
spline = CubicSpline(
source_sample_ids,
np.concatenate([np.zeros((2, Nd)), trajectory[i_c]], axis=0),
)
assembled_trajectory.append(spline(target_sample_ids))
assembled_trajectory = np.array(assembled_trajectory)
return assembled_trajectory
[docs]
def rewind(trajectory, Ns_transitions):
"""Add rewinding to the trajectory.
The trajectory is extended to come back to the k-space center
after the readouts with null gradients.
Parameters
----------
trajectory : array_like
Trajectory to extend with rewind gradients.
Ns_transitions : int
Number of rewinding steps used to come back to the k-space center.
Returns
-------
array_like
Extended trajectory with rewinding.
"""
Nc, Ns, Nd = trajectory.shape
if Ns_transitions < 3:
raise ValueError("`Ns_transitions` should be at least 2.")
# Assemble shots together per concatenation
assembled_trajectory = []
source_sample_ids = np.concatenate(
[np.arange(Ns), Ns + Ns_transitions - np.arange(3, 1, -1)]
)
target_sample_ids = np.arange(Ns_transitions + Ns)
for i_c in range(Nc):
spline = CubicSpline(
source_sample_ids,
np.concatenate([trajectory[i_c], np.zeros((2, Nd))], axis=0),
)
assembled_trajectory.append(spline(target_sample_ids))
assembled_trajectory = np.array(assembled_trajectory)
return assembled_trajectory
[docs]
def oversample(trajectory, new_Ns, kind="cubic"):
"""
Resample a trajectory to increase the number of samples using interpolation.
Parameters
----------
trajectory : np.ndarray
The original trajectory array, where interpolation
is applied along the second axis.
new_Ns : int
The desired number of samples in the resampled trajectory.
kind : str, optional
The type of interpolation to use, such as 'linear',
'quadratic', or 'cubic', by default "cubic".
Returns
-------
np.ndarray
The resampled trajectory array with ``new_Ns`` points along the second axis.
Notes
-----
This function uses ``scipy.interpolate.interp1d`` to perform
the interpolation along the second axis of the input `trajectory` array.
Warnings
--------
Using 'quadratic' or 'cubic' interpolations is likely to generate
samples located slightly beyond the original k-space limits by
making smooth transitions.
See Also
--------
scipy.interpolate.interp1d : The underlying interpolation function
used for resampling.
"""
f = interp1d(np.linspace(0, 1, trajectory.shape[1]), trajectory, axis=1, kind=kind)
return f(np.linspace(0, 1, new_Ns))
####################
# FUNCTIONAL TOOLS #
####################
[docs]
def stack_spherically(
trajectory_func, Nc, nb_stacks, z_tilt=None, hard_bounded=True, **traj_kwargs
):
"""Stack 2D or 3D trajectories over the :math:`k_z`-axis to make a sphere.
Parameters
----------
trajectory_func : function
Trajectory function that should return an array-like
with the usual (Nc, Ns, Nd) size.
Nc : int
Number of shots to use for the whole spherically
stacked trajectory.
nb_stacks : int
Number of stacks of trajectories.
z_tilt : str, optional
Tilt of the stacks, by default `None`.
hard_bounded : bool, optional
Whether the stacks should be strictly within the limits of the k-space,
by default `True`.
**kwargs
Trajectory initialization parameters for the function provided
with `trajectory_func`.
Returns
-------
array_like
Stacked trajectory.
"""
# Handle argument errors
if Nc < nb_stacks:
raise ValueError("Nc should be higher than nb_stacks.")
# Initialize a plane to estimate potential thickness
trajectory = trajectory_func(Nc=Nc // nb_stacks, **traj_kwargs)
if trajectory.shape[-1] == 2:
trajectory = np.concatenate(
[trajectory, np.zeros((*(trajectory.shape[:2]), 1))], axis=-1
)
# Initialize z-axis with boundaries, and z-rotation
ub, lb = KMAX / nb_stacks, -KMAX / nb_stacks
if hard_bounded:
ub = max(np.max(trajectory[..., 2]), ub)
lb = min(np.min(trajectory[..., 2]), lb)
z_axis = np.linspace(-KMAX - lb, KMAX - ub, nb_stacks)
radii = np.cos(np.arcsin(z_axis / KMAX))
# Attribute shots to stacks following density proportional to surface
Nc_per_stack = np.ones(nb_stacks).astype(int)
density = radii**2 # simplified version
for _ in range(Nc - nb_stacks):
idx = np.argmax(density / Nc_per_stack)
Nc_per_stack[idx] += 1
# Start stacking the trajectories
new_trajectory = []
for i in range(nb_stacks):
# Initialize a single stack
stack = trajectory_func(Nc=Nc_per_stack[i], **traj_kwargs)
if stack.shape[-1] == 2:
stack = np.concatenate([stack, np.zeros((*(stack.shape[:2]), 1))], axis=-1)
stack[..., :2] = radii[i] * stack[..., :2]
stack[..., 2] = z_axis[i] + stack[..., 2]
# Apply z tilt
rotation = Rz(i * initialize_tilt(z_tilt, nb_stacks)).T
stack = stack @ rotation
new_trajectory.append(stack)
# Concatenate or handle varying Ns value
Ns_values = np.array([stk.shape[1] for stk in new_trajectory])
if (Ns_values == Ns_values[0]).all():
new_trajectory = np.concatenate(new_trajectory, axis=0)
new_trajectory = new_trajectory.reshape(Nc, Ns_values[0], 3)
else:
new_trajectory = np.concatenate(
[stk.reshape((-1, 3)) for stk in new_trajectory], axis=0
)
return new_trajectory
[docs]
def shellify(
trajectory_func,
Nc,
nb_shells,
z_tilt="golden",
hemisphere_mode="symmetric",
**traj_kwargs,
):
"""Stack 2D or 3D trajectories over the :math:`k_z`-axis to make a sphere.
Parameters
----------
trajectory_func : function
Trajectory function that should return an array-like
with the usual (Nc, Ns, Nd) size.
Nc : int
Number of shots to use for the whole spherically
stacked trajectory.
nb_shells : int
Number of shells of distorded trajectories.
z_tilt : str, float, optional
Tilt of the shells, by default "golden".
hemisphere_mode : str, optional
Define how the lower hemisphere should be oriented
relatively to the upper one, with "symmetric" providing
a :math:`k_x-k_y` planar symmetry by changing the polar angle,
and with "reversed" promoting continuity (for example
in spirals) by reversing the azimuth angle.
The default is "symmetric".
**kwargs
Trajectory initialization parameters for the function provided
with `trajectory_func`.
Returns
-------
array_like
Concentric shell trajectory.
"""
# Handle argument errors
if hemisphere_mode not in ["symmetric", "reversed"]:
raise ValueError(f"Unknown hemisphere_mode: `{hemisphere_mode}`.")
if Nc < 2 * nb_shells:
raise ValueError("Nc should be at least twice higher than nb_shells.")
# Attribute shots to shells following a prescribed density
Nc_per_shell = np.ones(nb_shells).astype(int)
density = np.arange(1, nb_shells + 1) ** 2 # simplified version
for _ in range((Nc - 2 * nb_shells) // 2):
idx = np.argmax(density / Nc_per_shell)
Nc_per_shell[idx] += 1
# Create shells one by one
radii = (0.5 + np.arange(nb_shells)) / nb_shells
new_trajectory = []
for i in range(nb_shells):
# Initialize trajectory
shell_upper = trajectory_func(Nc=Nc_per_shell[i], **traj_kwargs)
if shell_upper.shape[-1] < 3:
shell_upper = np.concatenate(
[shell_upper, np.zeros((*(shell_upper.shape[:-1]), 1))], axis=-1
)
# Carve upper hemisphere from trajectory
z_coords = KMAX**2 - shell_upper[..., 0] ** 2 - shell_upper[..., 1] ** 2
z_signs = np.sign(z_coords)
shell_upper[..., 2] += z_signs * np.sqrt(np.abs(z_coords))
# Initialize lower hemisphere from upper
shell_lower = np.copy(shell_upper)
if hemisphere_mode in ["symmetric", "reversed"]:
shell_lower[..., 2] = -shell_lower[..., :, 2] # Invert polar angle
if hemisphere_mode in ["reversed"]:
shell_lower[..., 1] = -shell_lower[..., :, 1] # Invert azimuthal angle
# Apply shell tilt
rotation = Rz(i * initialize_tilt(z_tilt, nb_shells)).T
shell_upper = shell_upper @ rotation
shell_lower = shell_lower @ rotation
# Scale them and add them to the trajectory
new_trajectory.append(radii[i] * shell_upper)
new_trajectory.append(radii[i] * shell_lower)
# Concatenate or handle varying Ns value
Ns_values = np.array([hem.shape[1] for hem in new_trajectory])
if (Ns_values == Ns_values[0]).all():
new_trajectory = np.concatenate(new_trajectory, axis=0)
new_trajectory = new_trajectory.reshape(Nc, Ns_values[0], 3)
else:
new_trajectory = np.concatenate(
[hem.reshape((-1, 3)) for hem in new_trajectory], axis=0
)
return new_trajectory
#########
# UTILS #
#########
[docs]
def duplicate_along_axes(trajectory, axes=(0, 1, 2)):
"""
Duplicate a trajectory along the specified axes.
The provided trajectories are replicated with different orientation,
with the :math:`k_x`-axis being considered as the default orientation
of the base trajectory.
Parameters
----------
trajectory : array_like
Trajectory to duplicate.
axes : tuple, optional
Axes along which to duplicate the trajectory, by default (0, 1, 2)
Returns
-------
array_like
Duplicated trajectory along the specified axes.
"""
# Copy input trajectory along other axes
new_trajectory = []
if 0 in axes:
new_trajectory.append(trajectory)
if 1 in axes:
dp_trajectory = np.copy(trajectory)
dp_trajectory[..., [1, 2]] = dp_trajectory[..., [2, 1]]
new_trajectory.append(dp_trajectory)
if 2 in axes:
dp_trajectory = np.copy(trajectory)
dp_trajectory[..., [2, 0]] = dp_trajectory[..., [0, 2]]
new_trajectory.append(dp_trajectory)
new_trajectory = np.concatenate(new_trajectory, axis=0)
return new_trajectory
def _radialize_center_out(trajectory, nb_samples):
"""Radialize a trajectory from the center to the outside."""
Nc, Ns = trajectory.shape[:2]
new_trajectory = np.copy(trajectory)
for i in range(Nc):
point = trajectory[i, nb_samples]
new_trajectory[i, :nb_samples, 0] = np.linspace(0, point[0], nb_samples)
new_trajectory[i, :nb_samples, 1] = np.linspace(0, point[1], nb_samples)
new_trajectory[i, :nb_samples, 2] = np.linspace(0, point[2], nb_samples)
return new_trajectory
def _radialize_in_out(trajectory, nb_samples):
"""Radialize a trajectory from the inside to the outside."""
Nc, Ns = trajectory.shape[:2]
new_trajectory = np.copy(trajectory)
first, half, second = (Ns - nb_samples) // 2, Ns // 2, (Ns + nb_samples) // 2
for i in range(Nc):
p1 = trajectory[i, first]
new_trajectory[i, first:half, 0] = np.linspace(0, p1[0], nb_samples // 2)
new_trajectory[i, first:half, 1] = np.linspace(0, p1[1], nb_samples // 2)
new_trajectory[i, first:half, 2] = np.linspace(0, p1[2], nb_samples // 2)
p2 = trajectory[i, second]
new_trajectory[i, half:second, 0] = np.linspace(0, p2[0], nb_samples // 2)
new_trajectory[i, half:second, 1] = np.linspace(0, p2[1], nb_samples // 2)
new_trajectory[i, half:second, 2] = np.linspace(0, p2[2], nb_samples // 2)
return new_trajectory
[docs]
def radialize_center(trajectory, nb_samples, in_out=False):
"""Radialize a trajectory.
Parameters
----------
trajectory : array_like
Trajectory to radialize.
nb_samples : int
Number of samples to keep.
in_out : bool, optional
Whether the radialization is from the inside to the outside, by default False
"""
# Make nb_samples into straight lines around the center
if in_out:
return _radialize_in_out(trajectory, nb_samples)
else:
return _radialize_center_out(trajectory, nb_samples)