"""Functions to initialize 2D trajectories."""
import numpy as np
import numpy.linalg as nl
from scipy.interpolate import CubicSpline
from .gradients import patch_center_anomaly
from .maths import R2D, compute_coprime_factors, is_from_fibonacci_sequence
from .tools import rotate
from .utils import KMAX, initialize_algebraic_spiral, initialize_tilt
#####################
# CIRCULAR PATTERNS #
#####################
[docs]
def initialize_2D_radial(Nc, Ns, tilt="uniform", in_out=False):
"""Initialize a 2D radial trajectory.
Parameters
----------
Nc : int
Number of shots
Ns : int
Number of samples per shot
tilt : str, float, optional
Tilt of the shots, by default "uniform"
in_out : bool, optional
Whether to start from the center or not, by default False
Returns
-------
array_like
2D radial trajectory
"""
# Initialize a first shot
segment = np.linspace(-1 if (in_out) else 0, 1, Ns)
radius = KMAX * segment
trajectory = np.zeros((Nc, Ns, 2))
trajectory[0, :, 0] = radius
# Rotate the first shot Nc times
rotation = R2D(initialize_tilt(tilt, Nc) / (1 + in_out)).T
for i in range(1, Nc):
trajectory[i] = trajectory[i - 1] @ rotation
return trajectory
[docs]
def initialize_2D_spiral(
Nc,
Ns,
tilt="uniform",
in_out=False,
nb_revolutions=1,
spiral="archimedes",
patch_center=True,
):
"""Initialize a 2D algebraic spiral trajectory.
A generalized function that generates algebraic spirals defined
through the :math:`r = a O^n` equality, with :math:`r` the radius,
:math:`O` the polar angle and :math:`n` the spiral power.
Common algebraic spirals include Archimedes, Fermat and Galilean spirals.
Parameters
----------
Nc : int
Number of shots
Ns : int
Number of samples per shot
tilt : str, float, optional
Tilt of the shots, by default "uniform"
in_out : bool, optional
Whether to start from the center or not, by default False
nb_revolutions : int, optional
Number of revolutions, by default 1
spiral : str, float, optional
Spiral type or algebraic power, by default "archimedes"
patch_center : bool, optional
Whether the spiral anomaly at the center should be patched
or not for spirals with `spiral` :math:`>2`, by default True
Returns
-------
array_like
2D spiral trajectory
Raises
------
ValueError
If `spiral` is negative.
Notes
-----
Algebraic spirals with negative powers, like hyperbolic or
lithuus spirals, show asymptotic behaviors around the center.
It makes them irrelevant for MRI and therefore negative powers
are not allowed as an argument.
"""
# Check spiral power is not negative
spiral_power = initialize_algebraic_spiral(spiral)
if spiral_power <= 0:
raise ValueError(f"Negative spiral definition is invalid (spiral={spiral}).")
# Initialize a first shot in polar coordinates
angles = 2 * np.pi * nb_revolutions * np.linspace(-1 if (in_out) else 0, 1, Ns)
radius = np.abs(angles) ** spiral_power
# Algebraic spirals with power coefficients superior to 1
# have a non-monotonic gradient norm when varying the angle
# over [0, +inf)
def _update_shot(angles, radius, *args):
shot = np.sign(angles) * np.abs(radius) * np.exp(1j * np.abs(angles))
return np.stack([shot.real, shot.imag], axis=-1)
def _update_parameters(single_shot, angles, radius, spiral_power):
radius = nl.norm(single_shot, axis=-1)
angles = np.sign(angles) * np.abs(radius) ** (1 / spiral_power)
return angles, radius, spiral_power
if spiral_power < 1 and patch_center:
parameters = (angles, radius, spiral_power)
learning_rate = min(
1, spiral_power
) # because low spiral power requires higher accuracy
_, parameters = patch_center_anomaly(
parameters,
update_shot=_update_shot,
update_parameters=_update_parameters,
in_out=in_out,
learning_rate=learning_rate,
)
angles, radius, _ = parameters
# Convert the first shot from polar to Cartesian coordinates
trajectory = np.zeros((Nc, len(angles), 2))
trajectory[0, :] = _update_shot(angles, radius)
# Rotate the first shot Nc times
rotation = R2D(initialize_tilt(tilt, Nc) / (1 + in_out)).T
for i in range(1, Nc):
trajectory[i] = trajectory[i - 1] @ rotation
trajectory = KMAX * trajectory / np.max(nl.norm(trajectory, axis=-1))
return trajectory
[docs]
def initialize_2D_fibonacci_spiral(Nc, Ns, spiral_reduction=1, patch_center=True):
"""Initialize a 2D Fibonacci spiral trajectory.
A non-algebraic spiral trajectory based on the Fibonacci sequence,
reproducing the proposition from [CA99]_ in order to generate
a uniform distribution with center-out shots.
The number of shots is required to belong to the Fibonacci
sequence for the trajectory definition to be relevant.
Parameters
----------
Nc : int
Number of shots
Ns : int
Number of samples per shot
spiral_reduction : float, optional
Factor used to reduce the automatic spiral length, by default 1
patch_center : bool, optional
Whether the spiral anomaly at the center should be patched
or not, by default True
Returns
-------
array_like
2D Fibonacci spiral trajectory
References
----------
.. [CA99] Cline, Harvey E., and Thomas R. Anthony.
"Uniform k-space sampling with an interleaved
Fibonacci spiral acquisition."
In Proceedings of the 7th Annual Meeting of ISMRM,
Philadelphia, USA, vol. 1657. 1999.
"""
# Check if Nc is in the Fibonacci sequence
if not is_from_fibonacci_sequence(Nc):
raise ValueError("Nc should belong to the Fibonacci sequence.")
# Initialize all shots
Ns_reduced = int(np.around(Ns / spiral_reduction))
inter_range = np.arange(Nc).reshape((-1, 1))
intra_range = np.arange(Ns_reduced).reshape((1, -1))
phi_bonacci = (np.sqrt(5) - 1) / 2
radius = np.sqrt((intra_range + (inter_range / Nc)) / (Nc * Ns_reduced))
angles = 2j * np.pi * phi_bonacci * np.around(Nc * intra_range + inter_range)
trajectory = radius * np.exp(angles)
# Put Ns samples along reduced spirals if relevant
if spiral_reduction != 1:
reduced_x_axis = np.linspace(0, 1, Ns_reduced)
normal_x_axis = np.linspace(0, 1, Ns)
cbs = CubicSpline(reduced_x_axis, trajectory, axis=1)
trajectory = cbs(normal_x_axis)
# Normalize and reformat trajectory
trajectory *= KMAX / np.max(np.abs(trajectory))
trajectory = np.stack([trajectory.real, trajectory.imag], axis=-1)
# Patch center anomaly if requested
if patch_center:
patched_trajectory = []
for i in range(Nc):
patched_shot, _ = patch_center_anomaly(trajectory[i], in_out=False)
patched_trajectory.append(patched_shot)
trajectory = np.array(patched_trajectory)
return trajectory
[docs]
def initialize_2D_cones(Nc, Ns, tilt="uniform", in_out=False, nb_zigzags=5, width=1):
"""Initialize a 2D cone trajectory.
Parameters
----------
Nc : int
Number of shots
Ns : int
Number of samples per shot
tilt : str, optional
Tilt of the shots, by default "uniform"
in_out : bool, optional
Whether to start from the center or not, by default False
nb_zigzags : float, optional
Number of zigzags, by default 5
width : float, optional
Width of the cone, by default 1
Returns
-------
array_like
2D cone trajectory
"""
# Initialize a first shot
segment = np.linspace(-1 if (in_out) else 0, 1, Ns)
radius = KMAX * segment
angles = 2 * np.pi * nb_zigzags * np.abs(segment)
trajectory = np.zeros((Nc, Ns, 2))
trajectory[0, :, 0] = radius
trajectory[0, :, 1] = radius * np.sin(angles) * width * np.pi / Nc / (1 + in_out)
# Rotate the first shot Nc times
rotation = R2D(initialize_tilt(tilt, Nc) / (1 + in_out)).T
for i in range(1, Nc):
trajectory[i] = trajectory[i - 1] @ rotation
return trajectory
[docs]
def initialize_2D_sinusoide(
Nc, Ns, tilt="uniform", in_out=False, nb_zigzags=5, width=1
):
"""Initialize a 2D sinusoide trajectory.
Parameters
----------
Nc : int
Number of shots
Ns : int
Number of samples per shot
tilt : str, float, optional
Tilt of the shots, by default "uniform"
in_out : bool, optional
Whether to start from the center or not, by default False
nb_zigzags : float, optional
Number of zigzags, by default 5
width : float, optional
Width of the sinusoide, by default 1
Returns
-------
array_like
2D sinusoide trajectory
"""
# Initialize a first shot
segment = np.linspace(-1 if (in_out) else 0, 1, Ns)
radius = KMAX * segment
angles = 2 * np.pi * nb_zigzags * segment
trajectory = np.zeros((Nc, Ns, 2))
trajectory[0, :, 0] = radius
trajectory[0, :, 1] = KMAX * np.sin(angles) * width * np.pi / Nc / (1 + in_out)
# Rotate the first shot Nc times
rotation = R2D(initialize_tilt(tilt, Nc) / (1 + in_out)).T
for i in range(1, Nc):
trajectory[i] = trajectory[i - 1] @ rotation
return trajectory
[docs]
def initialize_2D_propeller(Nc, Ns, nb_strips):
"""Initialize a 2D PROPELLER trajectory, as proposed in [Pip99]_.
The PROPELLER trajectory is generally used along a specific
reconstruction pipeline described in [Pip99]_ to correct for
motion artifacts.
The acronym PROPELLER stands for Periodically Rotated
Overlapping ParallEL Lines with Enhanced Reconstruction,
and the method is also commonly known under other aliases
depending on the vendor, with some variations: BLADE,
MulitVane, RADAR, JET.
Parameters
----------
Nc : int
Number of shots
Ns : int
Number of samples per shot
nb_strips : int
Number of rotated strips, must divide ``Nc``
References
----------
.. [Pip99] Pipe, James G. "Motion correction with PROPELLER MRI:
application to head motion and free‐breathing cardiac imaging."
Magnetic Resonance in Medicine 42, no. 5 (1999): 963-969.
"""
# Check for value errors
if Nc % nb_strips != 0:
raise ValueError("Nc should be divisible by nb_strips.")
# Initialize single shot
Nc_per_strip = Nc // nb_strips
trajectory = np.linspace(-1, 1, Ns).reshape((1, Ns, 1))
# Convert single shot to single strip
trajectory = np.tile(trajectory, reps=(Nc_per_strip, 1, 2))
y_axes = np.pi / 2 / nb_strips * np.linspace(-1, 1, Nc_per_strip)
trajectory[:, :, 1] = y_axes[:, None]
# Rotate single strip into multiple strips
trajectory = rotate(trajectory, nb_rotations=nb_strips, z_tilt=np.pi / nb_strips)
trajectory = trajectory[..., :2] # Remove dim added by rotate
return KMAX * trajectory
[docs]
def initialize_2D_rings(Nc, Ns, nb_rings):
"""Initialize a 2D ring trajectory, as proposed in [HHN08]_.
Parameters
----------
Nc : int
Number of shots
Ns : int
Number of samples per shot
nb_rings : int
Number of rings partitioning the k-space.
Returns
-------
array_like
2D ring trajectory
References
----------
.. [HHN08] Wu, Hochong H., Jin Hyung Lee, and Dwight G. Nishimura.
"MRI using a concentric rings trajectory." Magnetic Resonance
in Medicine 59, no. 1 (2008): 102-112.
"""
if Nc < nb_rings:
raise ValueError("Argument nb_rings should not be higher than Nc.")
# Choose number of shots per rings
nb_shots_per_rings = np.ones(nb_rings).astype(int)
rings_radius = (0.5 + np.arange(nb_rings)) / nb_rings
for _ in range(nb_rings, Nc):
longest_shot = np.argmax(rings_radius / nb_shots_per_rings)
nb_shots_per_rings[longest_shot] += 1
# Decompose each ring into shots
trajectory = []
for rid in range(nb_rings):
ring = np.zeros(((nb_shots_per_rings[rid]) * Ns, 2))
angles = np.linspace(0, 2 * np.pi, Ns * nb_shots_per_rings[rid])
ring[:, 0] = rings_radius[rid] * np.cos(angles)
ring[:, 1] = rings_radius[rid] * np.sin(angles)
for i in range(nb_shots_per_rings[rid]):
trajectory.append(ring[i * Ns : (i + 1) * Ns])
return KMAX * np.array(trajectory)
[docs]
def initialize_2D_rosette(Nc, Ns, in_out=False, coprime_index=0):
"""Initialize a 2D rosette trajectory.
Parameters
----------
Nc : int
Number of shots
Ns : int
Number of samples per shot
in_out : bool, optional
Whether to start from the center or not, by default False
coprime_index : int, optional
Index of the coprime factor, by default 0
Returns
-------
array_like
2D rosette trajectory
"""
# Prepare to parametrize with coprime factor according to Nc parity
odd = Nc % 2
coprime = compute_coprime_factors(
Nc // (2 - odd),
coprime_index + 1,
start=1 if odd else (Nc // 2) % 2 + 1,
update=2,
)[-1]
# Define the whole curve in polar coordinates
angles = np.pi * np.linspace(-1, 1, Nc * Ns) / (1 + odd)
shift = np.pi * (odd - in_out) / 2
radius = KMAX * np.sin(Nc / (2 - odd) * angles + shift)
# Convert polar to Cartesian coordinates
trajectory = np.zeros((Nc, Ns, 2))
trajectory[:, :, 0] = (radius * np.cos(angles * coprime)).reshape((Nc, Ns))
trajectory[:, :, 1] = (radius * np.sin(angles * coprime)).reshape((Nc, Ns))
return trajectory
[docs]
def initialize_2D_polar_lissajous(Nc, Ns, in_out=False, nb_segments=1, coprime_index=0):
"""Initialize a 2D polar Lissajous trajectory.
Parameters
----------
Nc : int
Number of shots
Ns : int
Number of samples per shot
in_out : bool, optional
Whether to start from the center or not, by default False
nb_segments : int, optional
Number of segments, by default 1
coprime_index : int, optional
Index of the coprime factor, by default 0
Returns
-------
array_like
2D polar Lissajous trajectory
"""
# Adapt the parameters to subcases
nb_segments = nb_segments * (2 - in_out)
Nc = Nc // nb_segments
# Define the whole curve in polar coordinates
segment = np.pi / 2 * np.linspace(-1, 1, Nc * Ns)
shift = np.pi * (Nc % 2 - in_out) / 2
radius = KMAX * np.sin(Nc * segment + shift)
coprime_factors = compute_coprime_factors(Nc, coprime_index + 1, start=Nc % 2 + 1)
angles = (
np.pi
/ (1 + in_out)
/ nb_segments
* np.sin((Nc - coprime_factors[-1]) * segment)
)
# Convert polar to Cartesian coordinates for one segment
trajectory = np.zeros((Nc * nb_segments, Ns, 2))
trajectory[:Nc, :, 0] = (radius * np.cos(angles)).reshape((Nc, Ns))
trajectory[:Nc, :, 1] = (radius * np.sin(angles)).reshape((Nc, Ns))
# Duplicate and rotate each segment
rotation = R2D(initialize_tilt("uniform", (1 + in_out) * nb_segments))
for i in range(Nc, Nc * nb_segments):
trajectory[i] = trajectory[i - Nc] @ rotation
return trajectory
#########################
# NON-CIRCULAR PATTERNS #
#########################
[docs]
def initialize_2D_lissajous(Nc, Ns, density=1):
"""Initialize a 2D Lissajous trajectory.
Parameters
----------
Nc : int
Number of shots
Ns : int
Number of samples per shot
density : float, optional
Density of the trajectory, by default 1
Returns
-------
array_like
2D Lissajous trajectory
"""
# Define the whole curve in Cartesian coordinates
segment = np.linspace(-1, 1, Ns)
angles = np.pi / 2 * np.sign(segment) * np.abs(segment)
# Define each shot independenty
trajectory = np.zeros((Nc, Ns, 2))
tilt = initialize_tilt("uniform", Nc)
for i in range(Nc):
trajectory[i, :, 0] = KMAX * np.sin(angles)
trajectory[i, :, 1] = KMAX * np.sin(angles * density + i * tilt)
return trajectory
[docs]
def initialize_2D_waves(Nc, Ns, nb_zigzags=5, width=1):
"""Initialize a 2D waves trajectory.
Parameters
----------
Nc : int
Number of shots
Ns : int
Number of samples per shot
nb_zigzags : float, optional
Number of zigzags, by default 5
width : float, optional
Width of the trajectory, by default 1
Returns
-------
array_like
2D waves trajectory
"""
# Initialize a first shot
segment = np.linspace(-1, 1, Ns)
segment = np.sign(segment) * np.abs(segment)
curl = KMAX * width / Nc * np.cos(nb_zigzags * np.pi * segment)
line = KMAX * segment
# Define each shot independently
trajectory = np.zeros((Nc, Ns, 2))
delta = 2 * KMAX / (Nc + width)
for i in range(Nc):
trajectory[i, :, 0] = line
trajectory[i, :, 1] = curl + delta * (i + 0.5) - (KMAX - width / Nc / 2)
return trajectory